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Abstract: The law that relates the quotient of two NOE enhancements to the quotient of the corresponding internuclear 
distances raised to the negative sixth powers is the result of several assumptions concerning molecular motion: elongation 
and rotation of internuclear distance vectors are assumed to be uncorrelated, and the reorientational motion of all 
internuclear distance vectors of a given system are described by the same motional model (e.g. rotational diffusion) 
with the same parameters; that is, there is no allowance for individual rotational correlation times for each pair of nuclei. 
In order to check the validity of these rather restrictive assumptions, we calculated the dipolar correlation functions 
for a set of internuclear distances in the linear type II |8-turn-forming pentapeptide Tyr-Pro-Gly-Asp-Val and the cyclic 
peptide iV-triglycin[Lys8]vasopressin by molecular dynamics simulations (simulation time: more than 2 ns). The 
structures of these peptides have been determined by combination of 1H-1H-NOE data and molecular dynamics 
calculations using time-averaged distance constraints. Calculation of the correlation functions has been carried out 
by simulation in water (long-range interactions have been treated with the method of Ewald summation). We calculated 
the total dipolar correlation functions as well as the angular part and the distance part of the correlation functions and 
determined correlation times and generalized order parameters. For the studied set of H-H pairs the assumption of 
uncorrelated elongation and rotation has turned out to be a suitable approximation, while rotational correlation times 
are quantities specific for each spin pair of the studied peptides. The relative contribution of reorientation and distance 
fluctuation to the spectral density is quantitatively analyzed. On the basis of these findings a modified calibration 
formula is suggested. 

Introduction 

Nuclear Overhauser effect spectroscopy has become the most 
valuable tool for determining the three-dimensional solution 
structure of biological macromolecules. Distance information 
obtained from nuclear Overhauser effect (NOESY) data is 
implemented to and combined with various methods for con­
formational search.1'2 Different algorithms capable of processing 
intramolecular distance information have been developed, ranging 
from distance geometry methods3-5 and restrained molecular 
dynamics6"8 to the Kalman filter method.9'10 

However, there are several drawbacks that prevent NOESY-
derived internuclear distances from being as exact as one would 
desire. In addition to signal overlap these are basically multispin 
effects and internal dynamics of the molecule. A considerable 
amount of work has been spent in estimating the error—as well 
as in the development of methods for overcoming the limita­
tions—resulting from a neglect of alternative magnetization 
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In the present work we address the effects of molecular motion 
on the determination of intramolecular distances. The relaxation 
processes giving rise to the nuclear Overhauser effect (NOE) are 
triggered by the molecular motion of the system under consid­
eration. The central quantity representing the link between 
molecular motion and dipolar relaxation rate constants is the 
autocorrelation function of the internuclear distance vector (in 
the following referred to as the dipolar correlation function). In 
order to facilitate the treatment of the dipolar correlation function, 
physical models describing molecular motion are adopted. It is 
common practice to extract internuclear distances from NOE 
data by using two basic assumptions for molecular motion: (1) 
Elongation and rotation of the internuclear distance vector are 
assumed to be uncorrelated, and (2) the reorientational correlation 
functions of all internuclear distance vectors are described by a 
uniform, usually exponential, time behavior. These assumptions 
result in a simple relation between the cross relaxation rate 
constant and the internuclear distance, thus permitting the 
quantification of intramolecular distances. 

The goal of our work is to check the validity of these 
assumptions. For this purpose two peptide systems have been 
chosen: thecyclicdodecapeptideGlyr-Gly^-Gly-Cys'-Tyr^Phe3-
Gln4-Asn5-Cys«-Pro7-Lys8-Gly9-NH2 cyclic (1—6) disulfide, 
which is the 7V-triglycin derivative of [Lys8] vasopressin (tgvp), 
and the linear, predominantly type II /S-turn-forming pentapeptide 
Tyr-Pro-Gly-Asp-VaI (YPGDV). YPGDV is one of the peptide 
fragments which have been systematically examined with regard 
to /3-turn folding and stability by H. J. Dyson et al.33 The 1H-
NMR data for tgvp are from H. Sterk's laboratory.34 

We determined the structures of these peptides using restrained 
molecular dynamics with time-averaged distance constraints 
(MD-tar), a concept introduced by A. Torda et al.35'36 

As structure and dynamics of flexible molecules are very 
sensitive to the environment of the simulation,37-39 we recorded 
the dipolar correlation functions under the following conditions: 
(I)A large number of solvent molecules are explicitly present in 
the simulation. (2) In order to ensure a realistic description of 
the dielectric environment, long-range Coulomb interactions have 
been treated with the method of Ewald summation. For both 
systems we performed simulations of more than 2 ns duration for 
the acquisition of the correlation functions of a set of interproton 
distance vectors. 

Theory 

The nuclear Overhauser effect (NOE) is a kinetic phenomenon 
involving magnetization transfer between nuclei. The following 
equation governs the relaxation of a two-spin system under 
idealized conditions (spin-lattice relaxation is assumed to be the 
only relaxation mechanism):40 

A-Ml = _(M< - M1J(IW11 + W215 + W015) -

(A/f- Ml0)(W215-W015) (1) 

M[ and Mf are the z-magnetizations of spin / and spin S, 
respectively, M'z0 and Mf0 are the corresponding equilibrium 
values, and Wu, W2is, and W0is are the probabilities for a single 
quantum transition of spin /, for a double quantum transition and 
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for a zero quantum transition, respectively. The expression (2 Wu 
+ W2Is + Wois) is also called the dipolar longitudinal relaxation 
rate constant pis, and (W2is - W0is) is the cross relaxation rate 
constant tr/s. The initial buildup of NOEs in a kinetic experiment 
involves <JIS as the rate constant: 

fi\S)(t) = (Ts/7/Ws' (2) 

fi{S} is the NOE enhancement, i.e. the fractional change in the 
intensity of / on saturating S;f^S] = (M'2 - M'zfl)/M'zfi. 

Expressions for the transition probabilities in eq 1 are derived 
from quantum mechanical time-dependent perturbation theo­
ry.40-41 

Wmn = (l/h2) jVmn(0)Vmn(t)dt (3) 

The letters m and n stand for the initial and the final state of the 
spin system, and Vmn are the matrix elements of the dipolar 
Hamiltonian 

V= ( M o / 4x ) f tY/Y s (W)[ 'S - (l/r,s
2)(rrI5)(Sr[5)] (4) 

where f!5 is the internuclear distance vector in the laboratory 
coordinate system and r/s is the length of r/s. Combining eqs 3 
and 4, one gets 

W^n = kmnjcf5
D(t)c-^'dt (5) 

where kmn is a constant depending on the respective transition 
and C^(O is the dipolar correlation function. 

Cfs
D(t) = rls-\Q)rIS-\t)-PMO>kt)) (6) 

Pi is the second Legendre polynomial and \x the unit vector pointing 
along fis. 

Without assumptions there is no direct route to an average 
internuclear distance. Therefore, the traditional approach sim­
plifies the dipolar correlation function CDD(t) in the following 
way: First, elongation and rotation are assumed to be uncoupled; 
that is, they are considered to be independent processes. There 
is no requirement for rotation and elongation to occur on different 
time scales for this separation. There will be such a requirement, 
however, in the later stage of the derivation of the simple 
calibration formula eq 13, namely, for the step from eq 9 to eq 
10. Uncoupled rotation and elongation permit a factoring of the 
dipolar correlation function in an angular and a distance part: 

C°D(t) = C^f(O C°^(t) (7) 

For Cf^(t) various models may be introduced, provided that they 
use parameters that are the same for all distance vectors within 
a molecule. This is a requirement for the calibration method 
used in analyzing NOESY spectra (a well-characterized NOE 
with known distance between the nuclei is used as an internal 
intensity standard; cf. eq 13). Of course such a uniform time 
behavior is a severe restriction of the reorientational motion model, 
and our results clearly rule out such a model as a candidate for 
a proper description of molecular motion. For easy tractability 
usually isotropic rotational diffusion is chosen. Thus, one obtains42 

C°D(t) = e-'/T">'C£f (O (8) 

There are two possible arguments for this assumption: (1) Overall 
tumbling is the only contribution to rotational motion; reorien-
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Chemie: Weinheim, 1989. 

(41) Atkins, P. W. Molecular Quantum Mechanics, 2nd ed.; Oxford 
University Press: Oxford, 1983; Chapter 7. 

(42) Tropp, J. J. Chem. Phys. 1980, 72 (11), 6035-6043. 



4008 J. Am. Chem. Soc, Vol. 116, No. 9, 1994 Abseher et al. 

tational motion in a molecule-fixed ("internal") coordinate frame 
is negligible. Trot would then be equal to 1/6/?, where R is the 
rotational diffusion constant for the overall tumbling motion of 
the molecule. (2) Internal motion does contribute, but there are 
no individual correlation times for different distance vectors within 
a molecule. (This is not a very likely situation.) In this case Trot 

is given by Tr0,"
1 = Trot,ov"' + TTOijnf

l, where Trot,0v = 1/67? and 
Trot.int is the effective rotational correlation time in the internal 
coordinate frame. Furthermore, it is assumed that distance 
correlation reaches its plateau value in a short time interval as 
compared to reorientational motion; a specific model of such a 
behavior may be40,43 

O ) = (^P)2 + fc? - (nP)2}e-'/TdU (9) 
At this point there are two quantities specific for each internuclear 
vector: riS and T^. In order to get rid of T^ (a requirement for 
proceeding), T^S is assumed to be small as compared to Tmt- Doing 
the Fourier transformation in eq 5, we obtain for the cross 
relaxation rate constant 

cIS = (1/'1O)Oi0/^)2h2yjy2
s(rIS-3)2f(rI0i) (10) 

/7s is now—by assumption—the only quantity which reflects the 
individual behavior of a specific internuclear distance vector fts, 
as a uniform rotational time behavior was assumed. /(rrot) is 
given by 

yy \ _ " T r O t ^TOt , . . .. 

ATM}-! + {„, +^rn*'1 + (V1-^Tn* 

Relying on eq 10, calibration becomes feasible: 

where (ij) and (fc,/) are two different spin pairs, one of them with 
a well-known distance r between the nuclei. As the distribution 
functions of the internuclear distances are usually unknown, the 
averaging cannot be performed explicitly. Thus, eq 12 is rewritten 
in terms of effective distances: 

aij/akl = rij,eff lrkl.eff O 3 ) 

This simple formula is the result of rather restrictive assumptions 
concerning molecular motion, which are briefly summarized in 
the following: (i) the product approximation represented by eq 
7, (ii) the postulation of a uniform time behavior of the rotational 
motion, e.g. eq 8, and (iii) elongation and rotation are assumed 
to take place on different time scales (requirement for eq 10). For 
comparison, Lipari and Szabo44'45 also factor the dipolar cor­
relation function, namely, in a part arising from overall motion 
(CjJf) and a part arising from internal motions (CjJf). This is 
physically reasonable, but entirely different from eq 7, because 
there is no one-to-one correspondence between overall and internal 
motion on the one hand and rotation and elongation on the other 
hand. Internal motions usually do contribute to the distance 
part as well as to the angular part of the dipolar correlation 
function. Thus, C?? a priori cannot be equated to C%?. 
Furthermore, the formalisms for the interpretation of NMR 
relaxation data introduced by Jardetzky et al.46-48 or Lipari and 
Szabo44'45 respectively describe the motion of each distance vector 
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in the internal coordinate frame by an individual rotational 
correlation time, as opposed to eq 13. 

In order to find out how good the total dipolar correlation 
function can be approximated using a uniform rotational 
correlation time and separately averaged distance and angular 
parts, we recorded CDD(t) as well as C^f (f) and C^f(O during 
the MD simulations of YPGDV and JV-triglycin [Lys8] vasopressin. 

Programs and Methods 

For generating the initial all-trans configurations of the peptides, we 
used the INSIGHTII molecular modeling package (Biosym). The 
molecular topologies have been constructed with the program PROGMT 
of the GROMOS86 package49 using the 37D4 version of the force field 
(vacuum simulations) or the 37C4 version (solvated simulations), 
respectively. For setting up the systems for the solvated simulations, we 
used the GROMOS programs PROBOX and PROION. The final 
rectangular boxes were 3.0 X 3.0 X 3.5 nm (tgvp) and 2.8 X 2.8 X 2.8 
nm (YPGDV) in size and contained 983 and 712 SPC-type water 
molecules, respectively. 

All MD simulations were carried out with a modified version of the 
program PROMD, originally part of the GROMOS86 package. The 
subroutines for computing the neighbor lists and calculating nonbonded 
interactions were replaced by a self-written code. 

In order to eliminate high-order vibrational motions, the SHAKE 
algorithm50 was applied with a time step of 2 fs. The temperature was 
kept near 300 K by an appropriate scaling of the atomic velocities.51 For 
economic reasons, the neighbor-list technique was exploited using an 
updating frequency of 10 time steps. 

Self-written subroutines for calculating time-averaged distance restraint 
forces and the dipolar correlation functions have been added to our version 
of PROMD. 

A. Restrained Molecular Dynamics. The NOE distance information 
has been taken into account using the following type of restraint potential: 

UIKir = \(r-rmJ2Vr<rmiTl (14) 

Urestt = X2(f- O 2 V ^ r 1 1 1 n (16) 

where rmx is the upper bound, r^n the lower bound of the respective 
NOE, and Xi and X2 are the force constants. This is the commonly used 
harmonic restraint potential with one exception: Instead of involving the 
instantaneous internuclear distance r(t), this potential restrains the average 
distance t(t), given by the following formula:35'36 

Kt) = [(l/r)jyP(-t'/r)r(t-tr} dt^" (17) 

In other words, a memory function e"''/' is employed with T as a 
characteristic decay time, which has been set to 1.25 ps. Without the 
memory function the average value of the internuclear distance (?) would 
become increasingly insensitive to the instantaneous values of the 
internuclear distance (/•). Using an exponential memory function one 
can calculate KO from f(t - Af) recursively:35 

KO"3 = Kf - AO"VA,/T + KO-3U - e"4,/r) (18) 

where At is the time step of the simulation. 
As the 37C4 and 37D4 versions of the GROMOS force field consider 

explicitly only those hydrogens that are attached to polar groups, the 
coordinates of hydrogens attached to aliphatic and aromatic carbon atoms 
have to be generated separately. The restraint force acting on such a 
hydrogen atom is then redistributed for each time step to the neighboring 
atoms explicitly present in the force field.49 In the following we sometimes 
refer to the restraint-driven structure generation process as "folding". 
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This is not to be confused with the autonomous folding process of a 
nascent peptide chain in a natural environment or a simulation of such 
a process. 

We divided the available structural information about the peptides 
into two groups. One data set—consisting exclusively of NOE distances 
determining the peptides' main chain conformation—has been used as 
input for time-averaged constraints. The other independent data set—3J 
coupling constants, dihedral angles, nontrivial hydrogen bonds—has been 
used as a reference for checking the modeled structures. 

"Folding" of the peptides has been performed in vacuo. It required 
200 ps at maximum. The force constant X2 (eq 16) was set equal to 1000 
or 2000 (in some cases 5000) kJ mol"1 nm-2. Comparison with the force 
constant of the covalent "C-N bond, which is 188 407 kJ mol"1 nm~2 in 
the GROMOS 37D4 force field, reveals that the force constants for 
time-averaged distance restraining are evidently low. The force constant 
Xi (eq 14) was set to 0 in order to avoid further restriction of the systems' 
dynamics. In addition van der Waals repulsion as such prevents atoms 
from coming too close to each other. 

In the case of N-triglycin [Lys8] vasopressin a dihedral restraint potential 
for fixing the trans configuration of the peptide bond between Cys6 and 
Pro7 turned out to be necessary. The force constant of the native dihedral 
potential was enlarged from 33.5 to 63.5 kJ mol-1 during the intermediate 
"folding" period. We started with the reduced form of the peptide; that 
is, there was no disulfide bond. First, we modeled the part of the molecule 
constituting the ring. When all distance constraints inside the ring had 
been fulfilled, we closed the disulfide bond: The two sulfhydryl groups 
were brought near to each other by introducing a further (fictitious and 
not experimental) distance constraint. By this method we made sure 
that the topological constraint imposed by the disulfide bond is not present 
in the early stage of restraining. After the closure of the ring we began 
to apply constraints concerning the residues outside the ring. 

After "folding" we performed at least 200 ps simulation runs under 
the same conditions (in vacuo, distance constraint forces still active; the 
Cys-Pro dihedral potential force constant has been reset to its "native" 
value). During this period we acquired time-averaged structural 
parameters needed for comparison with the reference data set. (We 
preferred this method to an analysis of a few snapshots.) 

Finally, we changed the environment and performed solvated simu­
lations using only the native force field (no constraints present). During 
simulation periods of more than 2 ns we observed the kinetic stability of 
the folded structures and recorded the dipolar correlation functions of a 
set of internuclear distance vectors. 

B. Dipolar Correlation Function. The normalized dipolar correlation 
function is given by 

C00W = / 7 S - 3 ( 0 ) / > S - 3 ( 0 - P 2 ( M ( 0 ) - M ( 0 ) / ^ (19) 

In addition we recorded the (normalized) rotational part, 

Cf„fW = P2(M(O)-M(O) (20) 

and the normalized distance part, 

CSf(O - rIS-
3(.0)rls-\t)/r[S* (21) 

of the total dipolar correlation function separately, ns and Ji = fiS/\fis\ 
have been calculated in intervals of 0.02 ps. The sliding time window 
within which the autocorrelation functions are calculated was chosen to 
be T = 30 ps. 

The calculations have been performed on local workstations (HP 9000/ 
720, IBM RS6000/550) as well as on an IBM ES9021 and on an IBM 
RS6000/550 cluster, both located at the Computer Center of the 
University of Vienna. 

Product Approximation Error. In order to estimate the error arising 
from factoring the total dipolar correlation function into an angular and 
a distance part (eq 7), the product of CSf(O and c£?(r) has been 
calculated and compared to the total dipolar correlation function. We 
defined the error due to the product approximation in the following way: 

(mot(pA)) = M^»^c^d, m 

where again T is the size of time window of the correlation function (30 
ps). We use an integral error because NMR integrates over the fast time 

scales. A time scale is considered to be fast if its correlation time is much 
smaller than (1 /a), where a is the frequency of the transitions by which 
dipolar cross relaxation occurs. 

Motional Parameters. We extracted motional parameters from the 
correlation functions by fitting them to target function g(t). As the 
simulated correlation functions clearly show multiexponential time 
behavior, we used target functions which allow for more than one 
underlying motional process. Assuming these processes to occur inde­
pendently from each other, the composed correlation function g(t) may 
be written as a product of simple correlation functions in the following 
way: 

g«)=n[5'2+° - s .v / r ' ] (23) 

The expression in square brackets is the general form of the time correlation 
function of a diffusive motional process, e.g. rotational diffusion or 
diffusive-like jump processes, with the correlation time T1 and the 
generalized order parameter S2, which lies within the interval [0,1]. 
These parameters a priori need not be physically meaningful. For our 
fits;' runs from 1 to 2 or from 1 to 3. In the case of the total dipolar 
correlation function and its angular part, one of the generalized order 
parameters is equal to 0, because the overall tumbling motion is not 
spatially restricted. Irrespective of the overall tumbling's physical 
characteristic, we account for it with a single parameter T,„, (spatially 
not restricted component of molecular motion), which potentially is specific 
for a given NOE. The target functions in the following equations (24-
26) have been used for the fits of the total correlation function and its 
angular part. If i runs up to 2, we obtain correlation functions of an 
analytical form as proposed by Lipari and Szabo.44 

g(t) = [S2 + (1 - S2)e-'/TM] z'lr"" (24) 

If i runs up to 3, the target function becomes 

git) = [S2 + (1 -52)e-'/Ttal'][5^ + (1 - S2)e-'/Ti"*]t-'/T"" (25) 

This is equivalent to 

g(t) = S2S2C'"'"- + S\(.l - S?)e-'(T|"'rl+r°'"') + (1 - S2J(I -

^ j - ^ r ' W t ' M 1 ) + (52 _ s^e-X'tou-'+W) (26) 

If TUU1I «
 Tint,2 « fair, eq 26 approximates to 

g(t) = S2s-'/T«" + (1 - S2)e"-'/T|"'1 + (S2 - S2)e-'/ri»" (27) 

where S2 = S2S\. This type of correlation function has been proposed 
by Clore et al.52>53 for those cases where the Lipari-Szabo approach fails 
to account for the NMR relaxation data. Again we emphasize that we 
permit Tsnr to be NOE-specific. For the fits of the distance correlation 
functions, target functions like eq 23 have been used. None of the two 
respectively three-order parameters have been set to 0, as distance 
correlation functions in principle do not vanish asymptotically. 

We used two criteria for the assessment of the goodness-of-fit. As a 
first step, we inspected the sum of least squares, 

T 

Y (Sd)-C(I1))
2 (28) 

which is precisely the quantity minimized by the fitting algorithm. C(O 
is the (normalized) correlation function under consideration, i.e. one of 
the following three: CDD(t), Cgf(r), or C£f (/)• '/ runs from 0 to T = 30 
ps in 0.02-ps steps. The sums of least squares for each fit are shown in 
Tables 7 and 8. In order to be compatible with the classical theory of 

(52) Clore, G. M.; Driscoll, P. C; Wingfield, P. T.; Gronenborn, A. M. 
Biochemistry 1990, 29, 7387-7401. 

(53) Clore, G. M.; Szabo, A.; Bax, A.; Kay, L. E.; Driscoll, P. C; 
Gronenborn, A. M. J. Am. Chem. Soc. 1990, 112, 4989-4991. 
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Table 1. Results of Folding tgvp in vacuo (Colui 

NOE* 

«£(1.6) 
£#1.2) 
rf&W) 
dS(3,4) 
d2v(4.5) 
< & 6 ) 
« 6 . 7 ) 
<£(7,8) 

class6 

long-range 
sequential 
sequential 
sequential 
sequential 
sequential 
sequential 
sequential 

intensity* 

S 

m 
m 
s 
s 
S 

S 

S 

1994 

mn 5) and of the Subsequent Solvated Simulation (Column 6)" 

X2' 

1000 
1000 
1000 
2000 
2000 
1000 
1000 
1000 

r/nm (200-ps MD-tar') 

0.218 ±0.014 
0.202 ± 0.007 
0.207 ± 0.021 
0.200 ± 0.009 
0.319 ±0.010 
0.209 ± 0.009 
0.408 ± 0.004 
0.205 ± 0.007 

?/nm (2.4-ns MD) 

0.238 ± 0.027 
0.206 ±0.013 
0.209 ±0.015 
0.199 ±0.013 
0.339 ±0.011 
0.202 ±0.013 
0.410 ±0.013 
0.205 ±0.015 

Abseher et al. 

remark 

in the ring 
in the ring 
in the ring 
in the ring 
in the ring 
in the ring 
trans specific 
outside the ring 

" NOE constraints used and corresponding mean internuclear distances. X2: this column shows the final values of the force constant (see text). Xi 
is always 0. All force constants of restraint potentials are 0 during the 2.4-ns solvated simulation, f is the average internuclear distance (sampling 
interval in both cases 0.02 ps). ^ f (6,7) is specific for the trans configuration of the Cys-Pro peptide bond and the only distance that markedly violates 
the distance constraint. 'Notation and classification follows ref 56.c Possible entries: s (strong), m (medium), w (weak). * In kJ mol-1 nnr2. 'Molecular 
dynamics with time-averaged restraints (tar). 

Table 2. Results of Folding YPGDV in vacuo (Column 5) and of the Subsequent Solvated Simulation (Column 6).B 

NOE 

45(2.3) 
03.4) 
#0,2) 
<*2?0.4) 
435(2.4) 
04,5) 

class 

sequential 
sequential 
sequential 
sequential 
medium-range 
sequential 

intensity 

s 
S 

m 
m 
w 
W 

X2* 

1000 
5000 
1000 
1000 
5000 
1000 

F/nm (200-ps MD-tar) 

0.202 ± 0.008 
0.265 ± 0.016 
0.304 ±0.011 
0.306 ± 0.004 
0.393 ± 0.010 
0.421 ±0.015 

r/nm(2.18-nsMD) 

0.205 ±0.015 
0.361 ± 0.052 
0.271 ±0.021 
0.270 ±0.019 
0.503 ± 0.060 
0.427 ± 0.024 

" NOE constraints used and corresponding mean internuclear distances, r is the average internuclear distance (sampling interval 0.02 ps). * In kJ 
mol-1 niti"2. 

probability, we also calculated the chi-squared probability function g:54 

e(,/2,x2/2) = - T 7 - ^ - f" e-V'2-" d* (29) 
J0 e-'/W2"1' dtJx/2 

where x2 is given by 

« • • £ • 
(*(«,) -C(O)2 

At1) 

with the variance 

<r2a,.) = (2T/L)[l-Ca,.)]2 

(30) 

(3D 

given by Zwanzig and Ailawadi.55 T is the mean relaxation time and L 
the trajectory length, v in eq 29 is the number of degrees of freedom, 
i.e. the number of data points reduced by the number of parameters of 
the correlation function. The chi-squared probability function yields the 
probability that even for a "correct" model the chi-squared value will 
exceed that of the given fit. Q is a value between 0.0 and 1.0. Even for 
the worst cases, i.e. large values for E(,(£(t/) - C(f,))2 or small values of 
a2, respectively, Q equals 1.0 within machine precision. This demonstrates 
the high quality of the fits. Therefore, for practical purposes, it makes 
no difference if one uses the simulated correlation functions or their fitted 
counterparts. 

Results 

A. Structure Determination. The NOE distances used as 
constraints have been taken from refs 34 and 33. The NOE 
subsets chosen for modeling are shown in Tables 1 and 2. We 
applied distance constraints to main chain hydrogen atoms only. 

(54) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. 
Numerical Recipes. The Art of Scientific Computing; Cambridge University 
Press: Cambridge, 1986. 

(55) Zwanzig, R.; Ailawadi, N. Phys. Rev. 1969, 182, 280-283. 
(56) Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley-Inter-

science: New York, 1986; Chapter 7. 
(57) Sterk, H. Unpublished results. 
(58) Bystrov, V. F.; Ivanov, V. T.; Portnova, S. L.; Balashova, T. A.; 

Ovchinnikov, Yu. A. Tetrahedron 1973, 29, 873-877. 

Exceptionally, we included a single NOE specific for the trans 
configuration of the X-Pro peptide bond (rf*f), which is present 
in both systems. As one can assume that the side chains of small 
systems like the two peptides studied here do not exhibit well-
defined conformations, no attempt has been made to restrict their 
dynamics. The force constant X2 of the restraint potential (eq 
16) was set to 1000 kJ mol-1 nirr2 for each NOE. In a few cases 
X2 had to be raised to 2000 kJ mol-' nnr2 (tgvp) or 5000 kJ mol"1 

nirr2 (YPGDV). Tables 1 and 2 show the final values of X2. 

After "folding", the structures were subjected to a further 200-
ps simulation in vacuo with constraint potentials unchanged. 
During this time we acquired averaged structural parameters, 
i.e. NOE distances, main chain dihedral angles, and hydrogen 
bonds. Apart from NOE distances these data have not been used 
as an input for structure determination. The data in Tables 3 
and 4 show that the 200-ps time average of the folded structures 
is compatible with the experimental data. Figures 1 and 2 
(continuous lines) show distribution functions of main chain 
dihedral angles for several residues in tgvp and YPGDV. In 
addition, the characteristic hydrogen bonds (tgvp, 3PheCO-
5AsnNH; YPGDV, 'TyrCO-4AsnNH) formed spontaneously at 
the end of the folding procedure (Table 5). 

Finally, the peptides were transferred into water. Parameters 
characterizing the solvated systems are shown in Table 6. During 
2.4-ns (tgvp) and 2.18-ns (YPGDV) solvated simulations without 
NOE constraints ("free dynamics") dihedral angles and in­
tramolecular distances were monitored. Results are shown in 
Tables 1 and 2 (intranuclear distances) and Tables 3 and 4 
(dihedral angles). Figures 1 and 2 (dashed lines) show the dihedral 
angle distribution functions for dynamics without constraints. 
The average distances of the hydrogen bonds are given in Table 
5. 

B. Dipolar Correlation Functions. The solvated simulations 
served primarily to calculate the dipolar correlation functions of 
a set of internuclear distances in both systems. Figures 3a-d and 
4a-d show the total dipolar correlation functions of a subset of 
internuclear distance vectors in tgvp and YPGDV, respectively, 
together with the corresponding distance parts and angular parts. 
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Table 3. Results of Folding tgvp and Free Dynamics: Comparison of Simulated Average 0-Angles with NMR Data" 

residue 

'Cys 
2Tyr 
3Phe 
4GIn 
5Asn 
6Cys 
8Lys 

angle 

01 
02 
03 
04 
05 
06 
08 

VWHz 
8.6 
8.9 
7.5 
6.2 
8.8 
6.4 
7.2 

NMR data* 

0/deg 

-160,-80 
-145,-95 
-155,-85,70, 
-155,-85,70, 
-145,-95,70, 
-165, -75, 90, 

50 
50 
50 
30 

-165,-75,80,40 

200-ps MD-tar 0/deg 

-82.6 ± 8.4 
-126.0 ± 11.4 

23.6 ± 24.6 
61.1 ±5.9 

-78.3 ± 9.7 
-90.8 ± 11.7 
-52.3 ± 10.7 

2.4-ns free MD 0/deg 

-90.1 ±26.0 
-126.7 ±24.5 

22.3 ±23.7 
66.2 ± 11.7 

-89.1 ±23.2 
-96.1 ±21.6 
-37.6 ± 38.9 

1 The values in column 4 are derived from the V coupling constants using the Karplus equation.58 * From ref 57. 

Table 4. Results of Folding YPGDV and Free Dynamics: 
Comparison of Literature and Average Simulation Data for <j>- and 
!/•-Angles of Residues 2 and 3 of a Type II 0-Turn 
residue 

2PrO 
2PrO 
3GIy 
3GIy 

angle 

02 

03 

lit." 

-60° 
120° 
90° 
0° 

lit." 

-89° 
120° 
90° 
0° 

200-ps MD-tar 

^44.1° ±6.1» 
90.4» ± 5.0° 
64.4° ± 8.6» 
16.9» ± 12.3° 

2.18-nsfreeMD 

-54.5° ± 13.9° 
127.2° ± 16.6» 
36.9° ±112.2° 

-72.0° ± 66.8 

The motional parameters (correlation times and generalized order 
parameters) referred to in the following have been obtained by 
fitting the simulated correlation functions to the target functions 
described in the Programs and Methods section. Data are shown 
in Tables 7 and 8. 

Distance Correlation Functions. The distance parts for both 
systems complete the major part of their decay on a subpicosecond 
time scale. The correlation times for this rapid initial decay are 
smaller than 100 fs; only for d°%((3,a) in tgvp a greater value (190 
fs) is observed. (The numbering of residues in tgvp is the 
following: Gly?-Gly<3-Glya-Cys1-Tyr2-Phe3-Gln4-Asn5-Cys6-Pro7-
Lys8-Gly9-NH2.) In almost all cases a second time scale with 
correlation times between 1 and 18 ps follows. A further 
considerably slower decay (correlation times as long as 75 ps) 
occurs for several distance correlation functions, but the cor­
responding order parameter is always greater than 0.97; only for 
tfjv(8,9) in tgvp (outside the ring) the order parameter for the 
slow correlation time (47 ps) is 0.93. The magnitude of the 
asymptotic value of the distance correlation function is correlated 
with the validity of the product approximation (see below). 

Total and Orientational Correlation Functions. In the case of 
the angular and the total correlation functions the multiexpo-
nential character is more pronounced. The initial femtosecond 
time scale decay is followed by slower processes with non-negligible 
amplitudes. The corresponding order parameters of CDD(t) and 
C™(t) of both peptides are between 0.84 and 0.97; only for 
rfff (i8,a), which lies outside the ring in tgvp, is it considerably 
lower (0.70). The intermediate correlation times are in the interval 
[0.7 ps, 13 ps], and even the slowest orientational correlation 
times Tsnr cover a rather broad range (tgvp, 130-292 ps; YPGDV, 
62-141 ps). The slowest correlation times of the angular 
correlation function and of the total correlation function of a 
given NOE are quite similar, as can be seen in Tables 7 and 8. 

Product Approximation. The validity of the product ap­
proximation (eq 7) has been investigated by comparing the product 
of the (independently averaged) angular and distance part to the 
total dipolar correlation function. Plots of a subset are shown in 
Figures 3e-h (tgvp) and 4e-h (YPGDV). For all the NOEs 
analyzed the average relative error (eq 22) is given in Tables 9 
and 10. In order to illustrate the correlation between the product 
approximation error and the asymptotic value of the distance 
correlation function, n^S^, (cf. eq 23) is also listed. The 
average relative error does not exceed 0.9% (tgvp) or 1.5% 
(YPGDV), respectively, with the exception of ̂ ( 8 , 9 ) (outside 
the ring in tgvp), which exhibits a 4.1% error (Figure 3h) and 
the lowest asymptotic value for a distance correlation function 

observed in tgvp. The smallest relative errors are observed for 
NOEs with very well correlated distances (e.g. Figure 3, parts 
b and 0. and the error will vanish if the internuclear distance 
does not fluctuate at all. This is not surprising, because in this 
case Cfif (t) is equal to 1 for all times t. 

A discussion of the separability issue in terms of radial and 
angular order parameters has recently been given by R. Briis-
chweiler et al.,26 based on their molecular dynamics study of the 
decapeptide antamanide. They also find elongation and rotation 
separable to a good approximation. 

Effects on the Calibration of Distances. Relying on these 
findings, in particular on the validity of the product approximation 
and the multiexponential characteristic of the correlation func­
tions, we tried to generalize the r-Maw in such a way that internal 
motions are accounted for. 

The general form of the non-normalized distance correlation 
function used here is 

CSf(O = ̂ I I ^n + O - SL>-'/r*»] (32) 
n 

which is equal to 

cSf(o='-6EK"+ ' "T^'*" (33) 
n n 

where the coefficients a„ stand for products of order parameters 
"Sdi«,( ° r (1 - Sdis,i)> respectively, and T'^„ is a combined 
correlation time formed according to 

T dis,n ~ / .CfTdis.f (34) 

with C1 either 1 or 0. As shown in the appendix, the second term 
in eq 33 makes a very small contribution to the spectral density 
and will be neglected here. In other words, we retain only the 
asymptotic part of the distance correlation function, which we 
denote in the following simply with S^8: 

Casymp « (^)2 = ̂ H ^ = ^ L (35) 
n 

For the angular correlation function an analogous expression 
holds, 

O O = ][>me-tl^mjn (36) 

where bm again collects the angular order parameters and T^,,^ 
the rotational correlation times including rim. For an appropriate 
example see eq 26. On the basis of this general form of the 
rotational correlation function, the rotational part of the total 
cross relaxation rate constant (eq 10) is given by the sum 

^=E^« (T 'ro..J (37) 
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Figure 1. Distribution functions of main chain dihedral angles in tgvp: continuous lines (—) 200-ps MD-tar; dashed lines (—) 2.4-ns free MD; (a) 
<t>\; (b) &; (c) 03; and (d) tf>4-

with the partial cross relaxation rate constants fm{T\0Um) given 
by eq. 11. As a consequence, the generalized form of eq 12 now 
reads 

sums, 

(38) 

"rotTsnr V J_ J_^rot,m^Tsnr 
m 

is of practical importance. Thus, we obtain 

(41) 

If the extreme narrowing limit, i.e. T « (1/w), holds for all / „ , , 
where « is either (o>; + ois) °r (^/ - ^s)» expression 11 simplifies 
to 5Tr0t, which in its turn implies 

Jki 

r-6 <?2 T ij ij snr,ij 

- -6 Sn Tsm,kl 
rkl Kl 

(42) 

F=5][>mT'r( (39) 

Substituting expressions 35 and 39 into eq 38, we obtain 

alj _ rij i^i^iA^m^nj'iot.ndii (40) 

As shown in the appendix, only the leading term in the respective 

where S2 = Sl11Sf01 within the framework of the product 
approximation. This equation differs from the commonly used 
expression, eq 13, for deriving internuclear distances by two 
modifying cofactors: the ratio of the total order parameters 
SyS2

kl and the ratio of the slowest angular correlation times 
Tsnr.tj/'Tinr.ki- As we have shown in Tables 7 and 8, S2 and rSIlr are 
not universal, but rather specific for the underlying NOE. Thus, 
the two ratios are far from unity. Performing a "worst case" 
analysis, we find m&x(Sl/S2

kl) = 1.42, max(Tsnr,y/Tsnr,w) = 2.25 
for tgvp and max(Sy/Sjf,) = 1.23, max(Tsnri,y/Tsnr,t/) = 2.28 for 
YPGDV. 
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Figure 2. Distribution functions of main chain dihedral angles in YPGDV: 
(a) 4>r, (b) fa; (c) 03; and (d) ip3. 

Table 5. Average O-H Distance of the Hydrogen Bonds in tgvp 
and YPGDV (in nm) 

continuous lines (—) 200-ps MD-tar; dashed lines (—) 2.18-ns free MD; 

for tgvp and 

hydrogen bond 200-ps MD-tar 

tgvp: 3PheCO-5AsnNH 0.204 ±0.014 
YPGDV: >TyrCO-4AsnNH 0.196 ±0.010 

Table 6. Parameters of the Solvated Systems 

tgvp 

solvated 
simulation 

0.208 ± 0.028 
0.547 ±0.137 

YPGDV 

(4/^)1/6worS ,case=1.231/6=1.04 

1/6 = 2 281/6 = 1 15 
worst case i - i o l,lJ 

peptide atoms" 
counterions 
H2O molecules 
box size/nm3 

108 
2 
983 
3.0X3.0X3.5 

46 
3 
712 
2.8 X 2.8 X 2.1 

" No explicit hydrogen atoms on carbon atoms. 

For the actual derivation of internuclear distances, however, 
the inverse sixth power of the respective ratio is taken. These are 

2 A C 2-W 6worstcaS e=l-421 / 6=1.06 

(r Ir W 6 
V' snr,i/7 ' snr,fc/v , = 2.251 / 6= 1.14 

yTsra,ij/ Tsnr,kl' 

for YPGDV. 

Discussion 

The structures of JV-triglycin[Lys8]vasopressin and YPGDV 
have been modeled with the restrained molecular dynamics 
method. A small number of NOE constraints have been used 
with small force constants in the range of 0.5% (1% or 2.5% in 
a few cases) of a covalent bond of the GROMOS force field. This 
becomes feasible by the application of time-averaged distance 
constraints. As the constraints have to be satisfied on average 
only, the systems retain their genuine dynamical behavior to a 
greater extent as compared to the use of conventional distance 
constraints.59'60 Nevertheless, the modeled structures are com­
patible with other independently determined experimental data. 

(59) Schmitz, U.; Kumar, A.; James, T. L. J. Am. Chem. Soc. 1992,114, 
10654-10656. 

(60) Pearlman, D. A.; Kollman, P. A. J. MoI. Biol. 1991, 220, 429-457. 
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Figure 3. Normalized dipolar correlation functions of <^(1,6), <£f(6,7), d^W,a), and <ffi(S,9) (tgvp) plotted against time in picoseconds (trajectory 
length 2.40 ns, time window 30 ps, sampling interval 0.02 ps): (a-d) total dipolar correlation functions (lower curves in all diagrams), corresponding 
angular parts (middle curves), and distance parts (upper curves); in b and c the total dipolar correlation function and the angular part nearly coincide; 
(e-h) total dipolar correlation functions and products of angular and distance parts. 

During the solvated simulations the two peptides exhibit entirely 
different dynamical behavior. The ring moiety of tgvp is very 
rigid, whereas YPGDV loses the type II 0-turn-specific confor­
mation. A profound study of the behavior of YPGDV during a 
2.2-ns solvated simulation has been reported by D. J. Tobias et 
al.61 It is evident that the dynamic behavior of YPGDV contrasts 
with the dynamic behavior of a type II /3-turn in a native protein. 
For the present investigation it served primarily as a model system 
with high mobility. 

As this analysis deals with small systems, it is restricted to 
NOEs with short sequence distances. There is only one long-
range NOE (rf£f(l,6) in tgvp). However, the motion of this 

(61) Tobias, D. J.; Mertz, J. E.; Brooks, C. L„ III. Biochemistry 1991, 30 
(24), 6054-6058. 

distance vector is restricted by the adjacent disulfide bond and 
therefore not truly characteristic for long-range NOEs. 

The striking differences between the two systems with regard 
to their dynamical behavior do not reflect themselves in the 
correlation functions. With respect to the general shape of the 
correlation functions the differences within a system exceed those 
between them. 

The foundations of the commonly used /-Maw for distance 
determination from NOE data have been investigated. The 
analysis focused on the basic assumptions involved in the derivation 
of the r-Maw: (1) Can elongation and rotation of an internuclear 
distance vector be considered as independent processes? (2) Does 
elongation occur on a time scale faster than rotation? (3) Is the 
reorientational motion of all internuclear distance vectors de-
scribable by a uniform model, i.e. a model with parameters specific 
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for the system as a whole and not specific for each single NOE? 
We summarize our findings in the following paragraphs. 

(1) As mentioned in the theory section, a reasonable approach 
for simplifying the dipolar correlation function is a splitting in 
an overall and an internal part. This would apply to large systems, 
for which the influence of internal motions on the overall 
reorientation is usually negligible. For smaller systems a more 
intricate coupling between these two hierarchies of motion has 
to be expected. Under these circumstances no longer can a well-
defined overall correlation time be expected, because local motions 
will act upon the overall tumbling behavior. In fact the Tsnr 

correlation times show a significant diversity which cannot be 
interpreted in terms of insufficient averaging. It could of course 
be attributed to the anisotropy of tumbling. As mentioned in the 

Programs and Methods section, it was our intention to use as few 
parameters as possible in our target functions. Therefore, we 
characterized the spatially not restricted component (snr) of 
molecular motion with a single parameter, rsnr. This requires rsnr 

to be specific for a given NOE. 

In contrast to the factoring in an overall and an internal part, 
the derivation of the r^-law uses a different product approxi­
mation, namely, a splitting into a distance and an angular part, 
which reflects the physical reality to an even smaller extent. 
Surprisingly, this kind of factoring method does not yield relative 
errors greater than 4.1% for the two peptide systems studied. The 
size of the error is coupled with the asymptotic value of the distance 
correlation function. Taking the asymptotic value of the distance 
correlation function as a measure for distance fluctuations, it 
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Table 7. Correlation Times and Generalized Order Parameters of Total, Angular, and Distance Correlation Functions for Nine Internuclear 
Distance Vectors in tgvp" 

NOE 

<Cd,6) 

<ftl.2) 

«(2 ,3) 

433(3.4) 

«*g»(4.5) 

<C(5,6) 

dcJ(6,l) 

<*2?(fc«) 

dSv(8,9) 

correlation 
function 

CDD(t) 

O O 
C f̂(O 
Cco(0 

Oo 
cSf(o 
Ccc(0 

O o 
cSf(o 
CDD(t) 

Oo 
cSf(0 
CBC(0 

Oo 
cSf(o 
CflO(0 

O o 
CSf(O 
COD(0 

O o 
CSf(O 
C M (0 

O o 
CSf(O 
C M (0 

O o 
CSf(O 

target 
function 

eq25 

eq25 
eq 23, i = 3 

eq25 

eq25 

eq 23, i = 2 
eq25 

eq25 

eq 23, / = 2 
eq25 

eq25 

eq 23, i = 2 
eq25 

eq25 

eq 23, i = 2 

eq25 

eq25 

eq 23, i = 2 
eq25 

eq25 

eq 23, i = 2 
eq25 

eq25 

eq 23 , ; = 2 
eq25 

eq25 
eq 23, i = 2 

motional 

correlation times (ps) 

0.124,6.14,159 
0.145,5.83, 150 

0.091,2.20,29.2 

0.073,3.23, 195 

0.113,3.79, 196 

0.015,5.50 
0.071, 2.37, 226 

0.108,2.72,234 

0.021,6.86 

0.060,7.33, 128 

0.109,12.18, 141 

0.016,12.11 
0.104,4.77, 133 

0.113,4.069,130 

0.021,4.365 
0.092, 6.99, 237 

0.148,9.53,292 

0.017,6.20 
0.114,3.91, 177 

0.124,3.94,178 
0.037, 4.60 

0.370, 10.14, 141 

0.381,10.19, 133 

0.190,18.10 
0.067, 3.29, 109 

0.144,6.37,132 

0.0006, 46.96 

1 parameters 

corresponding order parameters 

0.877, 0.937, 0.0 

0.935,0.953,0.0 

0.947,0.985,0.981 

0.872,0.956,0.0 
0.894, 0.957, 0.0 

0.968, 0.997 

0.876,0.938,0.0 

0.901,0.941,0.0 

0.965, 0.995 

0.875,0.941,0.0 
0.900,0.915,0.0 

0.966,0.995 
0.946, 0.960, 0.0 

0.956, 0.966, 0.0 

0.992,0.997 

0.875, 0.930, 0.0 

0.899, 0.908, 0.0 

0.967, 0.997 
0.956, 0.964, 0.0 

0.960, 0.967, 0.0 

0.996, 0.998 

0.925,0.701,0.0 

0.928, 0.706, 0.0 

0.997, 0.997 
0.867, 0.906, 0.0 

0.927, 0.897, 0.0 

0.966, 0.932 

Ef-ol*(0-C(0]2 

4.143 X 10-3 

1.878 X 10~3 

0.401 X 10-3 

5.097 X 10-3 

3.940 X 10-3 

0.235 X ICH 
4.136 XlO"3 

2.646 X 10-3 

0.396 X 10-3 

9.482 X 10-3 

8.779 X 10-3 

0.247 X IO"3 

1.165 X IO"3 

0.902 X IO-3 

0.052 X IO"3 

6.608 X IO"3 

4.847 X IO"3 

0.204 X IO"3 

0.599 X IO"3 

0.576 X IO"3 

0.009 X IO"3 

5.068 X IO"3 

4.865 X IO"3 

0.016 X IO"3 

4.812 X IO-3 

4.488 X IO-3 

0.949 X IO-3 

" The target functions are introduced in the Programs and Methods section. The sums of least squares (cf. Programs and Methods section are given 
in the last column. 

seems plausible that higher asymptotic values, i.e. smaller 
fluctuations, are in accordance with a better validity of the product 
approximation. Of course, these findings have to be ascertained 
by further studies on other systems. 

(2) Elongation does not occur on time scales faster than rotation. 
Nevertheless, it will be possible to write an expression for the 
total spectral density containing no distance correlation times 
with acceptable approximation. This is due to two reasons: (1) 
The fastest processes give rise to very small contributions to the 
spectral density because their time constants are extremely small 
(femtosecond range). (2) The slower processes are generally 
associated with generalized order parameters Sj close to 1.0. 
Thus, their contribution is scaled by (1 - S,2), making it 
negligible, too. The error resulting from dropping the time-
dependent part of the distance correlation function is at most 
1.9% (tgvp) or 1.6% (YPGDV), respectively. 

(3) The rotational correlation functions of different internuclear 
vectors show a significant diversity. In other words, site-specific 
internal motions contribute to the angular part of the total dipolar 
correlation function. Distances obtained by the commonly used 
r-*-law will be subject to systematic errors as large as 15%, which 
is 1 order of magnitude greater than the product approximation 
error. Thus, individual correlation times appear to be the major 
source of error in NOE-derived distances, as far as the influence 
of molecular motion is concerned. 

Relying on the product approximation, a modified calibration 
formula is suggested. It introduces a scaling factor that 
compensates for the error resulting from individual correlation 
times and individual amplitudes of internal motions. This formula 
(eq 42) contains the slowest rotational correlation times of the 
NOE of interest and the calibration standard, weighted with the 

generalized order parameters of the corresponding dipolar 
correlation functions. 

Concluding, we point out that the findings of this study cannot 
be simply transferred to proteins, which exhibit a greater variety 
of motional processes. Provided that the factoring holds for 
proteins as well, one may conjecture an empirical correspondence 
between the magnitude of the rotational correlation times and 
generalized order parameters on the one hand and the type of 
structural elements involved in the NOE coupling on the other 
hand. This would pave the way for a class-specific calibration 
of NOEs. Investigations along these lines are currently in 
progress. 
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Appendix 

The expressions for the distance correlation function CjJf 
(t) and the orientational correlation function C^f(O used here 
give rise to a rather complicated expression for the spectral density. 
As a simple calibration formula is desirable, approximations are 
introduced in the derivation of eq 42. Here we show the 
background for these approximations in a general form and give 
a quantitative analysis. 

The normalized distance correlation function and the orien­
tational correlation function are given by 

c£?(0 = ]J[s dis.i + ( i - s i M ) e /T*"'] , - ' /Tdu/ (43) 
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Table 8. Correlation Times and Generalized Order Parameters of Total, Angular, and Distance Correlation Functions for Seven Internuclear 
Distance Vectors in YPGDV 

NOE 

«(2 ,3 ) 

0 3 . 4 ) 

# 0 . 2 ) 

«(3 ,4 ) 

« 2 , 4 ) 

« 4 , 5 ) 

« (4 ,5 ) 

correlation 
function 

CDD(t) 

Oo 
O O 
CDDU) 

O M 
0 ( 0 
C M ( 0 

0(0 
Oo 
CDD(t) 

Oo O o 
Coc(r) 

Oo 
CSf(O 
cM(0 
cfSu) 
cSf(o 
C M ( 0 

Oo 
CSf(O 

target 
function 

eq25 
eq25 

eq 23 , ; = 2 

eq25 

eq25 

eq 23, i = 2 
eq25 

eq25 

eq 23, J = 3 

eq25 

eq25 

eq 23, i = 2 

eq25 
eq24 

eq 23, i = 3 

eq25 

eq25 

eq 23, i = 3 
eq25 

eq25 

eq 23, i = 3 

motional parameters 

correlation times (ps) 

0.068,1.72,61.7 

0.117,2.19,61.8 

0.023,4.15 

0.055,1.36,77.0 

0.053, 0.682, 78.6 
0.118,4.99 

0.112,4.67,54.8 

0,159,9.85,66.5 
0.044, 2.07, 74.5 

0.095, 2.55, 67.5 

0.115,2.09,63.8 

0.028, 7.828 
0.097,1.05,70.8 

0.194,81.0 

0.105,2.27, 11.4 

0.161,11.0,142 
0.211,12.9,141 
0.044, 1.39, 15.4 

0.089,6.46,102 

0.130,7.02, 105 

0.016,0.888,75.2 

corresponding order parameters 

0.857, 0.926, 0.0 

0.877, 0.933, 0.0 
0.962, 0.995 

0.876, 0.896, 0.0 
0.960, 0.962, 0.0 

0.910,0.937 

0.890, 0.906, 0.0 

0.912,0.854,0.0 
0.976,0.991,0.970 

0.897, 0.902, 0.0 

0.918,0.924,0.0 

0.978, 0.986 

0.942, 0.955, 0.0 

0.973, 0.0 

0.957,0.968,0.971 

0.922, 0.880, 0.0 

0.942, 0.887, 0.0 

0.983,0.992,0.991 

0.839,0.876,0.0 

0.865, 0.865, 0.0 

0.963, 0.997, 0.988 

2JL0WO-C(O]1 

5.930 X 10-3 

5.812 X 10-3 

0.262 X 10-3 

32.56 X 10"3 

5.624 X 10-3 
19.19 X IO"3 

5.532 X 10-3 

3.537 X IO"3 

0.189 X 10-3 

5.970 X 10-3 

5.249 X IO"3 

1.133 X 10-3 

1.255 X IO"3 

6.238 X IO"3 

0.869 X 10-3 

7.803 X IO"3 

4.684 X IO"3 

0.148 X IO"3 

9.955 X IO"3 

8.392 X IO"3 

0.273 X 10-3 

" The target functions are introduced in the Programs and Methods section. The sums of least squares (cf. Programs and Methods section) are given 
in the last column. 

Table 9. Average Relative Error Due to the Product Approximation 
of the Dipolar Correlation Function and Asymptotic Values of the 
Distance Part of the Dipolar Correlation Function (tgvp) 

Table 11. Relative Contribution of the Terms I, II, III, and IV (Eq 
48) to the Total Spectral Density (tgvp) 

NOE <error(PA)> ^ A t j 

«£(1.6) 
« U ) 
«(2,3) 
«$(3.4) 
«(4,5) 
«(5,6) 
«(*,?) 
< & « ) 
«(8 ,9 ) 

-0.47% 
-0.77% 
-0.53% 
-0.89% 

0.11% 
-0.75% 

0.11% 
-0.25% 
4.10% 

0.914 
0.965 
0.960 
0.961 
0.989 
0.964 
0.994 
0.994 
0.901 

NOE 

« d > 6) 
« d , 2 ) 
«(2 ,3 ) 
« (3 ,4 ) 
« ( 4 , 5 ) 
« ( 5 , 6 ) 
«(6 ,7) 

O M 
O.') 

i 

99.49 

99.90 

99.91 

99.22 

99.88 
99.67 

99.92 

97.05 

97.57 

II 

0.1906 

0.092 27 

0.077 02 

0.7422 
0.1104 

0.3254 

0.076 84 

2.906 

0.5251 

III 

0.3184 

0.008 458 

0.014 57 

0.039 83 

0.009 894 
0.006 434 

0.005 128 

0.035 40 

1.868 

IV 

0.0038 

0.000 21 

0.000 34 

0.0020 
0.000 19 

0.000 45 

0.000 092 

0.0060 
0.034 

Table 10. Average Relative Error Due to the Product 
Approximation of the Dipolar Correlation Function and Asymptotic 
Values of the Distance Part of the Dipolar Correlation Function 
(YPGDV) 

NOE 

«(2 ,3 ) 
C(3,4) 
# 0 . 2 ) 
« ( 3 , 4 ) 
« 2 , 4 ) 

« 4 , 5 ) 

« ( 4 , 5 ) 

(error(PA)) 

-1.17% 

1.53% 

1.00% 
-0.04% 

0.97% 

0.16% 

-1.39% 

n^i,,,-
0.957 

0.853 
0.938 

0.965 
0.899 

0.967 

0.948 

and 

cases, we can rewrite these equations: 

I k 

oo=n5k,*-' /T ,"+E^-' /T ,rou 

Applying the product approximation eq 7, we obtain 

(45) 

(46) 

ate 
-'fydivr'+w1), 

C w = n [s"u+<! - su*"/Tmji e_,/r"r <44> EE^" ' ( V + V ) (47) 
k I 

Evaluating the products and splitting off a leading term in both 
The two peptides studied here fulfill the extreme narrowing limit 
quite well; that is, the condition r « (1/w) is valid for all 
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correlation times. Thus, the Fourier transform reduces to a simple 
integral over the correlation function: 

nsj,-,,, n 5ro( j t s n r + 
^ J i, J 

Y 
1 

o ; , 
Ii 

n^jZat^r'+tw"1)-1 + 
i j * j 

Y 
III 

S I afi, (T ,̂*"1 + T^rT1 (48) 

rv 
The four terms in this expression have the following meaning: 
The first term stems from the leading terms of C^f(r) and 
C^f(O and is expected to make up the major part of the spectral 
density (for data see Tables 11 and 12). The second and third 

Abseher et al. 

Table 12. Relative Contribution of the terms I, II, III, and IV (Eq 
48) to the Total Spectral Density (YPGDV) 

NOE 

<£(2,3) 
« 3 , 4 ) 

#0.2) 
Cl0J1OA) 
« 2 , 4 ) 
« 4 , 5 ) 
« (4 ,5 ) 

I 

99.69 
99.54 
96.24 
99.56 
99.53 
98.83 
98.50 

II 

0.2730 
0.036 71 
2.153 
0.2754 
0.006 539 
1.075 
0.9848 

III 

0.033 58 
0.4169 
1.546 
0.1566 
0.4624 
0.090 69 
0.5040 

IV 

0.0013 
0.0029 
0.062 
0.0033 
0.000 40 
0.0062 
0.011 

term represent "first-order" correction terms, and the fourth term 
is a "second-order" correction term. Dropping the time-dependent 
part of the distance correlation function now means to keep only 
the terms I and II. The refined calibration formula eq 42 relies 
only on term I. We calculated the relative contribution of these 
terms to the total spectral density for all NOEs considered in this 
study. They are given in Tables 11 and 12. 

It can be seen that for the two peptides, with regard to the 
spectral density, the total dipolar correlation function is well 
approximated by the product of the leading terms of the angular 
and the distance correlation function. 


